
Semi-supervised learning based on generative adversarial network: a

comparison between good GAN and bad GAN approach

Wenyuan Li

Electrical and Computer Engineering

University of California, Los Angeles

liwenyuan.zju@gmail.com
∗

Zichen Wang

Bioengineering

University of California, Los Angeles

zcwang0702@g.ucla.edu

Jiayun Li

Bioengineering

University of California, Los Angeles

jiayunli@ucla.edu

Jennifer Polson

Bioengineering

University of California, Los Angeles

jpolson@g.ucla.edu

William Speier

Radiology

University of California, Los Angeles

speier@ucla.edu

Corey Arnold

Radiology, Pathology, Bioengineering

University of California, Los Angeles

cwarnold@ucla.edu

Abstract

Recently, semi-supervised learning methods based on

generative adversarial networks (GANs) have received

much attention. Among them, two distinct approaches have

achieved competitive results on a variety of benchmark

datasets. Bad GAN learns a classifier with unrealistic sam-

ples distributed on the complement of the support of the in-

put data. Conversely, Triple GAN consists of a three-player

game that tries to leverage good generated samples to boost

classification results. In this paper, we perform a compre-

hensive comparison of these two approaches on different

benchmark datasets. We demonstrate their different prop-

erties on image generation, and sensitivity to the amount

of labeled data provided. By comprehensively comparing

these two methods, we hope to shed light on the future of

GAN-based semi-supervised learning.

1. Introduction

Semi-supervised learning (SSL) aims to make use of

large amounts of unlabeled data to boost model perfor-

mance, typically when obtaining labeled data is expen-

sive and time-consuming. Various semi-supervised learn-

ing methods have been proposed using deep learning and

proven to be successful on several standard benchmarks.

∗W. Li and C. Arnold are the corresponding authors.

Weston et al. [25] employed a manifold embedding tech-

nique using the pre-constructed graph of unlabeled data;

Rasmus et al. [21] used a specially designed auto-encoder

to extract essential features for classification; Kingma and

Welling [8] developed a variational auto encoder in the con-

text of semi-supervised learning by maximizing the varia-

tional lower bound of both labeled and unlabeled data; Miy-

ato et al. [16] proposed virtual adversarial training (VAT)

that tied to find a deep classifier, which had a good pre-

diction accuracy on training data and meanwhile was less

sensitive to data perturbation towards the adversarial direc-

tion.

Recently, generative adversarial networks (GANs) [6],

have demonstrated their capability in SSL frameworks [23,

3, 4, 2, 10, 12, 14]. GANs are a powerful class of deep gen-

erative models that are able to model data distributions over

natural images [20, 15]. Salimans et al. first proposed to

use GANs to solve a pK ` 1q-class classification problem,

where the dataset contained K class originally and the ad-

ditional pK ` 1qth class consisted of the synthetic images

generated by the GAN’s generator. Later on, Li et al. [2]

realized that the generator and discriminator in [23] may

not be optimal at the same time (i.e., the discriminator was

able to achieve good performance in SSL, while the gener-

ator may generate visually unrealistic images). They pro-

posed a three-player game (Triple-GAN) to simultaneously

achieve good classification results and obtained a good im-

age generator. Dai et al. [3] realized the same problem, but

1 55



instead gave theoretical justifications of why using bad sam-

ples from the generator was able to boost SSL performance.

Their model is called Bad GAN, which achieves state-of-

the-art performance on multiple benchmark datasets. An-

other line of work focused on manifold regularization [1].

Kumar et al. [10] estimated the manifold gradients at in-

put data points and added an additional regularization term

to a GAN, which promoted invariance of the discrimina-

tor to all directions in the data space. Lecouat et al. [12]

performed manifold regularization by approximating the

Laplacian norm that was easily computed within a GAN

and achieved competitive results.

In this paper, we focus on two GAN-based SSL models,

Triple GAN and Bad GAN, and perform a comprehensive

comparison between them. As both of models attempt to

solve a similar issue in the original setting [23] but are mo-

tivated by dissimilar perspectives, we believe that our com-

parison will provide insight for future SSL research. For

simplicity, we refer to Triple GAN as Good GAN in con-

trast to Bad GAN. In Section 2, we briefly review the two

models and their different approaches for solving loss func-

tion incompatibility; in Section 3, we show the network ar-

chitecture we employed, benchmark datasets we used, and

hyperparameters we selected in order to perform a fair com-

parison between these two models; in Section 4, we demon-

strate our comparison results and discuss several important

aspects we found for these two models; we conclude our

paper in Section 5.

2. Related Work

2.1. Bad GAN

Suppose we have a classification problem that requires

classifying a data point x into one of K possible classes.

A standard classifier takes in x as input and outputs a K-

dimensional vector of logits tl1, ..., lKu. Salimens et al.

[23] extend the standard classifier C by simply adding sam-

ples from the GAN generator G to the dataset, labeling them

as a new “generated” class y “ K `1, and correspondingly

increasing the dimension of C output from K to K ` 1.

The loss function LC{D for training C (i.e., the extended

discriminator D from the GAN’s perspective) then becomes

LC/D “ Lsupervised ` Lunsupervised

Lsupervised “ E
x,y„plpx,yq

r´ logppC{Dpy|x, y ă K ` 1qqs

Lunsupervised “ E
x„pupxq

r´ logp1 ´ pC{Dpy “ K ` 1|xqqs

` E
x„pgpxq

r´ logppC{Dpy “ K ` 1|xqqs

(1)

The supervised loss term Lsupervised is a traditional cross-

entropy loss that is applied to labeled data px, yq „

plpx, yq. The unsupervised loss requires C/D to put the syn-

thetic data from generator x „ pgpxq into the pK ` 1qth

class, while putting the unlabeled data x „ pupxq into the

real K classes. For the generator, [23] found feature match-

ing loss in Eq. 2 is the best in practice, though they gener-

ated visually unrealistic images. The feature matching loss

is,

LG “

›

›

›

›

›

E
x„pu

pfpxqq ´ E
zg„pzpzq

pfpGpzgqqq

›

›

›

›

›

2

2

(2)

where zg „ pzpzq is drawn from a simple distribution

such as uniform.

On the basis of this formulation, Dai et al. [3] give a the-

oretical justification on why the visually unrealistic images

(i.e., “bad” samples) from the generator could help with

SSL. Loosely speaking, the carefully generated “bad” sam-

ples along with the loss function design in Eq. 1 could force

C’s decision boundary to lie between the data manifolds of

different classes, which in turn improves generalization of

the classifier. Based on this analysis, they propose a Bad

GAN model that learns a bad generator by explicitly adding

a penalty term to generate “bad” samples. Their objective

function of the generator becomes:

LG “ ´Hrpgpxqs ` E
x„pgpxq

plog pptpxq Irp
ptpxq ą ǫs

`

›

›

›

›

›

E
x„pupxq

pfpxqq ´ E
zg„pzpzq

pfpGpzgqqq

›

›

›

›

›

2

2

(3)

where the first term measures the negative entropy of the

generated samples and tries to avoid collapsing while in-

creasing the coverage of the generator. The second term

explicitly penalizes generated samples that are in high den-

sity areas by using a pre-trained model, and the third term

is the same feature matching term as in Eq. 2.

2.2. Good GAN

Li et al. [2] also noticed the same problem in [23] as

the generator and the discriminator have incompatible loss

functions, but took a different approach to tackling this is-

sue. Intuitively, assume the generator can generate good

samples in the original settings of [23], the discriminator

should identify these samples as fake samples as well as pre-

dict the correct class for the generated samples. To address

the problem, [2] present a three-player game called Triple-

GAN that consists of a generator G, a discriminator D, and a

separate classifier C. C and D are two conditional networks

that generate pseudo labels given real data and pseudo data

given real labels respectively. To jointly evaluate the quality

of the samples from the two conditional networks, a single

56



Figure 1. Network architecture of Bad GAN (a) and Good GAN (b). Bad GAN (a) consists of two parts: a generator G aims to generates

“bad” samples, and a discriminator/classifier D/C that distinguishes real and fake samples and put the labeled samples into the right classes;

Good GAN (b) consists of three parts: two conditional networks G and C that generate pseudo labels given real data and pseudo data given

real labels respectively, and a separate discriminator D that distinguish the generated data-label pair from the real data-label pair.

discriminator D is used to distinguish whether a data–label

pair is from the real labeled dataset or not. We refer this

model as Good GAN because one of the aims for this for-

mulation is to obtain a good generator.

The authors prove that instead of competing equilibrium

states as in [23], Good GAN has the unique global optimum

for both C and G, i.e., ppx, yq “ pgpx, yq “ pcpx, yq, the

three joint distributions match one another. In other words,

a good classifier will result in a good generator and vice

versa. Furthermore, Good GAN is trained using the RE-

INFORCE algorithm, in which it generates pseudo labels

through C for some unlabeled data and uses these pairs as

positive samples to feed into D. This is a key to the success

of the model, as one of the crucial problems of SSL is the

limited size of the labeled data. Figure 1 shows the network

architecture of Good GAN and Bad GAN.

3. Comparison Method

3.1. Network Architecture

In Bad GAN, the discriminator has two roles: to classify

the real data into the right class and to distinguish the real

samples from the fake samples. For clarity, we refer to Bad

GAN’s discriminator as the classifier, since its input and

output are exactly the same as the classifier in Good GAN

due to the over-parameterization of the softmax layer [23].

To perform a fair comparison between Good GAN and

Bad GAN, we use the same network architecture for the

generator G and the classifier C in both models. We follow

the architecture closely in [2] to set up the additional dis-

criminator D in Good GAN. Both of them use Leaky-Relu

activation and weight normalization to ease the difficulty of

GAN’s training. Implementing them using same architec-

ture ideally avoids the possibility of using an architecture

that is custom-tailored to work well with one or the other.

Detailed model architectures can be found in the Appendix

A.

3.2. Datasets

Using the above-defined network architectures, we com-

pare the two models on the widely adopted MNIST [13],

SVHN [17], and CIFAR10 [9] datasets. MNIST consists

of 50,000 training samples, 10,000 validation samples, and

10,000 testing samples of handwritten digits of size 28ˆ28.

SVHN consists of 73,257 training samples and 26,032 test-

ing samples. Each sample is a colored image of size 32ˆ32,

containing a sequence of digits with various backgrounds.

CIFAR10 consists of colored images distributed across 10

general classes – airplane, automobile, bird, cat, deer, dog,

frog, horse, ship and truck. It contains 50,000 training sam-

ples and 10,000 testing samples of size 32 ˆ 32. Following

[2], we reserve 5,000 training samples from SVHN and CI-

FAR10 for validation if needed. For our CIFAR10 exper-

iment, we perform zero-based component analysis (ZCA)

[11] as suggested in [2] for the input of C, but still generate

and estimate the raw images using G and D.

We perform an extensive investigation by varying the

amount of labeled data. Following common practice, this

is done by throwing away different amounts of the underly-

ing labeled dataset [23, 19, 22, 24]. The labeled data used

for training are randomly selected stratified samples unless

otherwise specified. We perform our experiments on se-

tups with 20, 50, 100, and 200 labeled examples in MNIST,

500, 1000, and 2000 labeled examples in SVHN, and 1000,

2000, 400, 8000 examples in CIFAR10.

3.3. Hyperparameter Selection

For the hyperparameter selection such as learning rate

and beta for Adam optimization, and the coefficient for each

cost function term, we closely follow [2, 3]. In addition,

we perform extensive study of the effects of batch size on

performance for Bad GAN. As reported by [12], Bad GAN

training is sensitive to training batch size, and thus we vary

batch size in the training phase and compare their final per-

formances on MNIST and SVHN.

57



4. Experimental Results and Discussion

We implement Good GAN based on Tensorflow 1.10 [5]

and Bad GAN based on Pytorch 1.0 [18]. The generated

images from gG is not applied until the number of epochs

reach a threshold that gG could generate reliable image-

lable pairs. We choose 200 in all three cases. All of the

other hyperparameters including initial learning rate, max-

imum epoch number, relative weights and parameters in

Adam [7] are fixed according to [23, 2, 3] across all of the

experiments.

4.1. Classification

We report our classification accuracy on the test set in

Table 1, Table 2 and Table 3 for MNIST, SVNH and CI-

FAR10, respectively, along with the results reported in the

original papers. The similarity of our results to those re-

ported in the original papers suggests that our reproduced

models are accurate instantiations of Good GAN and Bad

GAN. Furthermore, we perform extensive study by varying

the amount of labeled data and observe that Good GAN and

Bad GAN behave quite differently under various circum-

stances.

First, with a medium amount of labeled data (e.g.,

MNIST with 100 or 200 labeled data, SVHN with more

than 2000 labeled data, or CIFAR10 with more than 2000

labeled data), Bad GAN performs better than Good GAN.

In fact, to the best of our knowledge, Bad GAN achieves

the current state-of-the-art performance on those bench-

mark datasets. However, with low amounts of labeled data,

Good GAN performs better, which demonstrates that Good

GAN is less sensitive to the amount of labeled data than

Bad GAN. One possible explanation is due to the use of the

REINFORCE algorithm in Good GAN, because it gener-

ates pseudo labels through C for some unlabeled data and

use these pairs as positive samples of D. Since C converges

quickly, this trick provides a clever way to enable the gen-

erator to explore a much larger data manifold that includes

both the labeled and unlabeled data information. In other

words, the classifier is able to provide pseudo labels for

the unlabeled data, while the discriminator will judge if

the pseudo labels are reliable or not throughout the train-

ing. This in return will affect the evolution of the generator,

which will take advantage of the unlabeled data to generate

good images. Generated good image-label pairs that im-

plicitly contain unlabeled data information will eventually

benefit the classifier. This works extremely well for rela-

tively simple datasets like MNIST, as Good GAN is able to

model the class-awarded data distribution through weak su-

pervision. On the other hand, Bad GAN yields decreased

performance when the amount of labeled data is low, as it

does not have any mechanism to augment the information

that could be used to train the classifier in this case.

4.2. Generated Images

In Figure 2, we compare the quality of images gener-

ated by Good GAN and Bad GAN. As can be seen, Good

GAN is able to generate clear images and meaningful sam-

ples conditioned on class labels, while Bad GAN generates

“bad” images that look like a fusion of samples from differ-

ent classes. In addition, Good GAN is able to disentangle

classes and styles. In Figure 2 bottom, we vary the class

label y in the vertical axis and the latent vectors z in the

horizontal axis to generate the images. As shown in the

figure, the latent vector z encodes meaningful physical ap-

pearances, such as scale, intensity, orientation, color and so

on, while the label y controls the semantics of the generated

images. Furthermore, Good-GAN can transition smoothly

from one style to another with different visual factors with-

out losing the label information as shown in Figure 3. This

proves that Good GAN can learn meaningful latent space

representations instead of simply memorizing the training

data.

4.3. Importance of Selection of Labeled Data

Another interesting observation is that the selection of

labeled data plays a crucial role for training Good GAN

model in the low labeled data scenario. As mentioned

above, the labeled data used for the training are randomly

selected stratified samples, except for the MNIST-20 case.

In this case, we found selecting representative labeled data

to train is the key to achieving good performance. The re-

ported accuracy in Table 1 is averaged over 10 runs where

we manually selected different representative labeled data

in a stratified way. Figure 4 (a) shows a single run that uses

randomly selected labeled data and does not achieve good

results, while Figure 4 (b) shows another run that is able to

achieve higher accuracy. The failure of the first run is due to

the initial selections for digit 4 being similar to 9, causing

the generator to generate many 9s when conditioned on la-

bel 4. The generator also generates low-quality images. We

also report that with a random selection of 20 labeled data,

the Good GAN was able to achieve 76.78˘6.47% accuracy

over 3 runs.

4.4. Importance of Batch Size

We found that batch size largely affect the final train-

ing results, in both Good GAN and Bad GAN. To investi-

gate the effect of batch size on Bad GAN performance, we

performed experiments with different batch size on MNIST

(with 100 labeled samples) and SVHN (with 1000 labeled

samples) using Bad GAN. As shown in Table 4, we empir-

ically show that the performance of Bad GAN is sensitive

to training batch size, and the optimal performance for each

dataset is achieved with a batch size of 100.

To further understand the effect of the batch size on Bad

GAN training, we present the generator loss with different

58



Table 1. Test accuracy on semi-supervised MNIST. Results are averaged over 10 runs. * denotes the special selection of labeled data. See

details in Section 4.3.

Model
Test accuracy for

a given number of labeled samples

20 50 100 200

Bad GAN [3] - - 99.21 ˘ 0.01% -

Triple GAN [2] 95.19 ˘ 4.95% 98.44 ˘ 0.72% 99.09 ˘ 0.58% 99.33 ˘ 0.16%

Bad GAN (ours) 68.12 ˘ 0.60% 96.24 ˘ 0.16% 99.17 ˘ 0.03% 99.20 ˘ 0.03%

Good GAN (ours) 95.93 ˘ 4.45%˚
98.68 ˘ 1.12% 99.07 ˘ 0.46% 99.17 ˘ 0.08%

Table 2. Test accuracy on semi-supervised SVHN. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

500 1000 2000

Bad GAN[3] - 95.75 ˘ 0.03% -

Triple GAN[2] - 94.23 ˘ 0.17% -

Bad GAN (ours) 94.21 ˘ 0.45% 95.32 ˘ 0.07% 95.47 ˘ 0.39%

Good GAN (ours) 94.67 ˘ 0.12% 95.30 ˘ 0.38% 95.37 ˘ 0.09%

Table 3. Test accuracy on semi-supervised CIFAR10. Results are averaged over 10 runs.

Model
Test accuracy for

a given number of labeled samples

1000 2000 4000 8000

Bad GAN [3] - - 85.59 ˘ 0.03% -

Triple GAN [2] - - 83.01 ˘ 0.36% -

Bad GAN (ours) 77.58 ˘ 0.17% 81.36 ˘ 0.08% 82.89 ˘ 0.13% 85.47 ˘ 0.10%

Good GAN (ours) 81.08 ˘ 0.57% 81.79 ˘ 0.37% 82.82 ˘ 0.41% 85.37 ˘ 0.18%

batch sizes for MNIST and SVHN in Figure 5. The re-

sults indicate that smaller batch sizes lead to larger gener-

ator loss in the final stage of training. As that generator

loss mainly depends on the first-order feature matching loss

in Bad GAN, an intuitive explanation could be that larger

batch sizes reduce the variance of the sample mean, allow-

ing the generator to quickly approximate the entire training

set. This leads to smaller generator loss, especially when

model training becomes more stable in the final stage.

As noted by [3], feature matching is performing distri-

bution matching in a weak manner, which could be largely

affected by batch size. On one extreme, when the batch

size is too small, the power of the generator in distribution

matching is weak due to the excessive generator loss. Gen-

erated samples are therefore more likely to diverge from the

manifold. Especially when data complexity increases, it is

more difficult to minimize the KL divergence between the

generator distribution and a desired complement distribu-

tion in Bad GAN, which could be one possible reason why

model degradation is more significant on SVHN when us-

ing 20 batch size. On the other extreme, larger batch size

leads to smaller generator loss, which comes with reduced

diversity of generated samples. When the batch size is too

large, the small generator loss will lead to a collapsed gener-

ator which fails to generate diverse samples that cover com-

plement manifolds. As a result, the decision boundary be-

tween such missing manifolds becomes under-determined,

which will also degrades model performance. We plot Bad

GAN performance under different batch sizes for MNIST

and SVHN in Appendix B.

Based on our experience, Good GAN is best when we

use a large batch size. Intuitively, a small batch size is not

good for the REINFORCE algorithm adopted in Good GAN

because a single wrong prediction of the unlabeled data will

have a big impact on the weight update in each iteration.

We perform Good GAN experiments on SVHN using dif-

ferent batch size. The results are shown in Table 5. Empir-

ically, we find that with small batch size, Good GAN is not

able to generate good image-label pairs, hence the gener-

ated image-label pairs even hurt the classifier’s performance

when we use them to train. (See more details in Appendix

B).

5. Conclusion

In this paper, we systematically and extensively com-

pared two GAN-based SSL methods, Good GAN and Bad

GAN, by applying these two models with commonly-used

benchmark datasets. We illustrate the distinct characteris-

59



Figure 2. Generated images from both Bad GAN (top) and Good GAN (bottom). The images generated from Good GAN are produced by

varying the class label y in the vertical axis and the latent vector z in the horizontal axis.

Figure 3. Class-conditional latent space interpolation. We first sample two random latent vectors z and linearly interpolate them. Then we

map these vectors to the image space conditioned on each class y. The vertical axis is the direction for latent vector interpolation while the

horizontal axis is the direction for varying the class labels.

Table 4. Bad GAN performance versus batch size on MNIST and SVHN. The results are achieved using 100 labeled samples in MNIST

and 1000 labeled samples in SVHN.

Batch size 20 50 100 200 400

MNIST-100 98.90 ˘ 0.04% 99.10 ˘ 0.03% 99.17 ˘ 0.03% 99.16 ˘ 0.03% 98.89 ˘ 0.02%

SVHN-1000 93.35 ˘ 0.05% 95.29 ˘ 0.03% 95.56 ˘ 0.02% 95.19 ˘ 0.02% 94.20 ˘ 0.04%

tics of the images they generated, as well as each mod-

els sensitivity to varying the amount of labeled data used

for training. In the case of low amounts of labeled data,

model performance is contingent on the selection of labeled

samples; that is, selecting non-representative samples re-

sults in generating incorrect image-label pairs and deteri-

orating classification performance. Furthermore, selecting

the optimal batch size is crucial to achieve good results in

both models. Notably, Good GAN and Bad GAN models

can be used for complementary purposes; Good GAN gen-

60



Figure 4. Two-runs of Good GAN model on MNIST dataset. (a)

A single run where we randomly select 20 labeled data. The gen-

erator generates a lot of wrong images conditioned on the label

and the classifier has lower performance. (b) Another run where

we manually select 20 representative labeled examples. This time

the generator is able to generate correct images, and the classifier

achieves good classification performance.

Table 5. Good GAN performance versus batch size on SVHN. The

results are achieved using 1000 labeled samples in SVHN.

Batch size 20 50 100

SVHN-1000 92.47% 92.59% 95.30%

erates good image-label pairs to train the classifier, while

Bad GAN generates samples that force the decision bound-

ary between data manifold of different classes. We envision

that combining these two methods should yield further per-

formance improvement in SSL.

Acknowledgements

The authors would like to acknowledge support from the
UCLA Radiology Department Exploratory Research Grant
Program (16-0003) and NIH/NCI R21CA220352. This
research was also enabled in part by GPUs donated by
NVIDIA Corporation.

References

[1] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Man-

ifold regularization: A geometric framework for learning

from labeled and unlabeled examples. Journal of machine

learning research, 7(Nov):2399–2434, 2006. 2

[2] LI Chongxuan, Taufik Xu, Jun Zhu, and Bo Zhang. Triple

generative adversarial nets. In Advances in neural informa-

tion processing systems, pages 4088–4098, 2017. 1, 2, 3, 4,

5

[3] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and

Ruslan R Salakhutdinov. Good semi-supervised learning that

requires a bad gan. In Advances in neural information pro-

cessing systems, pages 6510–6520, 2017. 1, 2, 3, 4, 5

[4] Zhe Gan, Liqun Chen, Weiyao Wang, Yuchen Pu, Yizhe

Zhang, Hao Liu, Chunyuan Li, and Lawrence Carin. Trian-

Figure 5. Batch size effect on generator loss in Bad GAN. The ex-

periments are performed on (a) MNIST using 100 labeled samples

and (b) SVHN using 1000 labeled samples.

gle generative adversarial networks. In Advances in Neural

Information Processing Systems, pages 5247–5256, 2017. 1

[5] Sanjay Surendranath Girija. Tensorflow: Large-scale ma-

chine learning on heterogeneous distributed systems. Soft-

ware available from tensorflow. org, 2016. 4

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 1

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 4

[8] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[9] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 3

61



[10] Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher.

Semi-supervised learning with gans: Manifold invariance

with improved inference. In Advances in Neural Informa-

tion Processing Systems, pages 5534–5544, 2017. 1, 2

[11] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. arXiv preprint arXiv:1610.02242, 2016.

3

[12] Bruno Lecouat, Chuan-Sheng Foo, Houssam Zenati, and

Vijay R Chandrasekhar. Semi-supervised learning with

gans: Revisiting manifold regularization. arXiv preprint

arXiv:1805.08957, 2018. 1, 2, 3

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

3

[14] Wenyuan Li, Yunlong Wang, Yong Cai, Corey Arnold, Emily

Zhao, and Yilian Yuan. Semi-supervised rare disease de-

tection using generative adversarial network. arXiv preprint

arXiv:1812.00547, 2018. 1

[15] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1

[16] Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori

Koyama. Virtual adversarial training: a regularization

method for supervised and semi-supervised learning. IEEE

transactions on pattern analysis and machine intelligence,

2018. 1

[17] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. In Advances in

neural information processing systems, 2011. 3

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In Advances in neural information

processing systems Workshop, 2017. 4

[19] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan

Li, Andrew Stevens, and Lawrence Carin. Variational au-

toencoder for deep learning of images, labels and captions.

In Advances in neural information processing systems, pages

2352–2360, 2016. 3

[20] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 1

[21] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri

Valpola, and Tapani Raiko. Semi-supervised learning with

ladder networks. In Advances in neural information process-

ing systems, pages 3546–3554, 2015. 1

[22] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.

Mutual exclusivity loss for semi-supervised deep learning.

In 2016 IEEE International Conference on Image Process-

ing (ICIP), pages 1908–1912. IEEE, 2016. 3

[23] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In Advances in neural information pro-

cessing systems, pages 2234–2242, 2016. 1, 2, 3, 4

[24] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In Advances in neural

information processing systems, pages 1195–1204, 2017. 3

[25] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan

Collobert. Deep learning via semi-supervised embedding.

In Neural Networks: Tricks of the Trade, pages 639–655.

Springer, 2012. 1

62



Appendices

A. Network Architecture

We list the detailed architecture we used to compare Good GAN and Bad GAN on MNIST, SVHN, and CIFAR10 datasets

in Table 6, Table 7 and Table 8 respectively.

Table 6. MNIST
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 28 ˆ 28 Gray Image Input 28 ˆ 28 Gray Image, Label y

MLP 500 units, softplus, batch norm

MLP 500 units, softplus, batch norm

MLP 500 units, softplus, batch norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 10 units, softmax,

Gaussian noise, weight norm

MLP 1000 units, lRelu,

Gaussian noise, weight norm

MLP 500 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 250 units, lRelu,

Gaussian noise, weight norm

MLP 12 units, sigmoid,

Gaussian noise, weight norm

Table 7. SVHN
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 32 ˆ 32 Colored Image Input 32 ˆ 32 Colored Image, Label y

MLP 8192 units,

Relu, batch norm

Reshape 512 ˆ 4 ˆ 4

5 ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3 ˆ 3 conv. 64. lRelu, weight norm

3 ˆ 3 conv. 64. lRelu, weight norm

3 ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3 ˆ 3 conv. 32. lRelu, weight norm

3 ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5 ˆ 5 deconv. 128. stride 2,

Relu, batch norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu,

stride 2, weight norm

0.5 dropout

3 ˆ 3 conv. 64. lRelu, weight norm

3 ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5 ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 10 units, softmax, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 1 unit, sigmoid, weight norm

B. Batch Size Effect in Bad GAN

Figure 7 shows the classification accuracy under different batch size of Bad GAN during the first 400 epochs of training.

As can be seen, the model performance is very sensitive to batch size. Figure 6 shows the generated images of Good GAN

under different batch size. With small batch size, Good GAN is not able to generate good image-label pairs.

63



Table 8. CIFAR10
Generator G Classifier C Discriminator D (Good GAN only)

Input Label y, Noise z Input 32 ˆ 32 Colored Image Input 32 ˆ 32 Colored Image, Label y

MLP 8192 units,

Relu, batch norm

Reshape 512 ˆ 4 ˆ 4

5 ˆ 5 deconv. 256. stride 2,

Relu, batch norm

Gaussian noise, 0.2 dropout

3 ˆ 3 conv. 96. lRelu, weight norm

3 ˆ 3 conv. 96. lRelu, weight norm

3 ˆ 3 conv. 96. lRelu,

stride 2, weight norm

0.5 dropout

0.2 dropout

3 ˆ 3 conv. 32. lRelu, weight norm

3 ˆ 3 conv. 32. lRelu,

stride 2, weight norm

0.2 dropout

5 ˆ 5 deconv. 128. stride 2,

Relu, batch norm

3 ˆ 3 conv. 192. lRelu, weight norm

3 ˆ 3 conv. 192. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu,

stride 2, weight norm

0.5 dropout

3 ˆ 3 conv. 64. lRelu, weight norm

3 ˆ 3 conv. 64. lRelu,

stride 2, weight norm

0.2 dropout

5 ˆ 5 deconv. 3. stride 2,

sigmoid, weight norm

3 ˆ 3 conv. 192. lRelu, weight norm

3 ˆ 3 conv. 192. lRelu, weight ntheirorm

3 ˆ 3 conv. 192. lRelu, weight norm

Global pool

MLP 10 units, softmax, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

3 ˆ 3 conv. 128. lRelu, weight norm

Global pool

MLP 1 unit, sigmoid, weight norm

Figure 6. Batch size effect in Bad GAN. The classification accuracy over the initial 400 training epochs under different batch size. (a) The

experiments are performed on MNIST dataset, using 100 labeled data. (b) The experiments are performed on SVHN dataset, using 1000

labeled data.

64



Figure 7. Batch size effect in Good GAN. With small batch size, Good GAN is not able to generate good image-label pairs. Experiments

are performed on SVHN with n “ 1000. All the images are generated at epoch “ 200 when we start to use the generated image to train.

65


